Colouring Random 4-Regular Graphs

نویسندگان

  • Lingsheng Shi
  • Nicholas C. Wormald
چکیده

We show that a random 4-regular graph asymptotically almost surely (a.a.s.) has chromatic number 3. The proof uses an efficient algorithm which a.a.s. 3colours a random 4-regular graph. The analysis includes use of the differential equation method, and exponential bounds on the tail of random variables associated with branching processes. A substantial part of the analysis applies to random d-regular graphs in general.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neighbour-Distinguishing Edge Colourings of Random Regular Graphs

A proper edge colouring of a graph is neighbour-distinguishing if for all pairs of adjacent vertices v, w the set of colours appearing on the edges incident with v is not equal to the set of colours appearing on the edges incident with w. Let ndi(G) be the least number of colours required for a proper neighbour-distinguishing edge colouring of G. We prove that for d ≥ 4, a random d-regular grap...

متن کامل

Colouring Random Regular Graphs

In a previous paper we showed that a random 4-regular graph asymptotically almost surely (a.a.s.) has chromatic number 3. Here we extend the method to show that a random 6-regular graph asymptotically almost surely (a.a.s.) has chromatic number 4 and that the chromatic number of a random d-regular graph for other d between 5 and 10 inclusive is a.a.s. restricted to a range of two integer values...

متن کامل

Filling the Complexity Gaps for Colouring Planar and Bounded Degree Graphs

We consider a natural restriction of the List Colouring problem: k-Regular List Colouring, which corresponds to the List Colouring problem where every list has size exactly k. We give a complete classification of the complexity of k-Regular List Colouring restricted to planar graphs, planar bipartite graphs, planar triangle-free graphs and to planar graphs with no 4-cycles and no 5-cycles. We a...

متن کامل

The generalised acyclic edge chromatic number of random regular graphs

The r-acyclic edge chromatic number of a graph is defined to be the minimum number of colours required to produce an edge colouring of the graph such that adjacent edges receive different colours and every cycle C has at least min(|C|, r) colours. We show that (r − 2)d is asymptotically almost surely (a.a.s.) an upper bound on the r-acyclic edge chromatic number of a random d-regular graph, for...

متن کامل

Random Colourings and Automorphism Breaking in Locally Finite Graphs

A colouring of a graph G is called distinguishing if its stabiliser in AutG is trivial. It has been conjectured that, if every automorphism of a locally finite graph moves infinitely many vertices, then there is a distinguishing 2-colouring. We study properties of random 2-colourings of locally finite graphs and show that the stabiliser of such a colouring is almost surely nowhere dense in AutG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Combinatorics, Probability & Computing

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2007